Branch: B.Sc.(IT)	Semester-I
Subject Code: 1104	Lecture: 04
	Credit: 04
Course Opted	Core Course-3 (Theory)
Subject Title	Mathematics-I

Course Objective:

- To introduce fundamental concepts of differential and applications of discrete structures and differential equations in the field of computer science
- Work with matrices and determine if a given square matrix is invertible.
- To learn about First order differential equations
- To introduce the basics of the theory of sets and some of its applications.

Learning Outcomes:

- After the completion of the course, Students will be able to
- Find the inverse of a square matrix. Solve the matrix equation Ax = b using row operations and matrix operations. Find the determinant of a product of square matrices, of the transpose of a square matrix, and of the inverse of an invertible matrix
- Will understand First order differential equations
- Will learn the basics of the theory of sets and some of its applications

Modules	Sr. No.	Topic and Details	No. of Lectures Assigned	Marks Weight age %
UNIT-I	1	Matrices and Determinants Definition of a matrix; Operations on matrices; Square Matrix and its inverse; determinants; properties of determinants; the inverse of a matrix; solution of equations using matrices and determinants; solving equations using determinants; eigen values and eigen vectors of a matrix	14	28
UNIT-II	2	Differential Equation First order differential equations; practical approach to Differential equations; first order and first degree differential equations; homogeneous equations. Linear equations; ; Exact Differential Equations.	14	28
UNIT-III	3	Set Theory: Definition of Sets, Subsets, Cardinality of Sets, types of sets: Equal Sets, Universal Sets, Finite and Infinite Sets, proper set, power sets, Operations on Sets: Union, Intersection, Complement of Sets, set difference, Cartesian Product, Venn Diagrams, and Algebra of sets	6	12
	4	Properties of integers: Definition of GCD, LCM, Theorems Euclidean algorithm and problems	5	10

UNIT-IV	5	Relations: Definitions of Relation, Reflexive Relation, Symmetric Relation, Transitive relation, Equivalence Relation	6	12
	6	Functions : Define Function ,Injective functions ,Surjective functions, Bijective functions, Composite function, Inverse of a function, Domain and Range	5	10
		Total	50	100

Outcomes:

On the successful completion of the course, the student will be able to:

- Apply the knowledge of matrices to solve the problems
- Understand the theory and techniques of set, functions ,relation .
- Understand some basic properties discrete structures, and be able to relate these to practical examples.
- Apply the knowledge and skills obtained to investigate and solve problems related to differential equations .

Text & Reference Books:

- Kolman, Busby and Ross, "Discrete mathematical Structures and graph theory", 6th Edition, 2009
- Alan Doerr, K. Levasseur, "Applied discrete structure for computer science", Galgotia publications, 1988
- P. N. Wartikar & J. N. Wartikar, "Elements of Applied Mathematics", 7th, Pune Vidyarthi Graha, 1988,
- Grewal. B.S, "Higher Engineering Mathematics", 41 st Edition, Khanna Publications, Delhi, 2011.
- Dass, H.K., and Er. Rajnish Verma," Higher Engineering Mathematics", S. Chand Private Ltd., 2011.